The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the golgi.

نویسندگان

  • Christopher Lord
  • Susan Ferro-Novick
  • Elizabeth A Miller
چکیده

Protein egress from the endoplasmic reticulum (ER) is driven by a conserved cytoplasmic coat complex called the COPII coat. The COPII coat complex contains an inner shell (Sec23/Sec24) that sorts cargo into ER-derived vesicles and an outer cage (Sec13/Sec31) that leads to coat polymerization. Once released from the ER, vesicles must tether to and fuse with the target membrane to deliver their protein and lipid contents. This delivery step also depends on the COPII coat, with coat proteins binding directly to tethering and regulatory factors. Recent findings have yielded new insight into how COPII-mediated vesicle traffic is regulated. Here we discuss the molecular basis of COPII-mediated ER-Golgi traffic, focusing on the surprising complexity of how ER-derived vesicles form, package diverse cargoes, and correctly target these cargoes to their destination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the Sar1 GTPase Cycle Is Necessary for Large Cargo Secretion from the Endoplasmic Reticulum

Proteins synthesized within the endoplasmic reticulum (ER) are transported to the Golgi via coat protein complex II (COPII)-coated vesicles. The formation of COPII-coated vesicles is regulated by the GTPase cycle of Sar1. Activated Sar1 is recruited to ER membranes and forms a pre-budding complex with cargoes and the inner-coat complex. The outer-coat complex then stimulates Sar1 inactivation a...

متن کامل

mBet3p is required for homotypic COPII vesicle tethering in mammalian cells

TRAPPI is a large complex that mediates the tethering of COPII vesicles to the Golgi (heterotypic tethering) in the yeast Saccharomyces cerevisiae. In mammalian cells, COPII vesicles derived from the transitional endoplasmic reticulum (tER) do not tether directly to the Golgi, instead, they appear to tether to each other (homotypic tethering) to form vesicular tubular clusters (VTCs). We show t...

متن کامل

Sit4p/PP6 regulates ER-to-Golgi traffic by controlling the dephosphorylation of COPII coat subunits

Traffic from the endoplasmic reticulum (ER) to the Golgi complex is initiated when the activated form of the GTPase Sar1p recruits the Sec23p-Sec24p complex to ER membranes. The Sec23p-Sec24p complex, which forms the inner shell of the COPII coat, sorts cargo into ER-derived vesicles. The coat inner shell recruits the Sec13p-Sec31p complex, leading to coat polymerization and vesicle budding. Re...

متن کامل

Contact of cis-Golgi with ER exit sites executes cargo capture and delivery from the ER

Protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus is mediated by coat complex II (COPII) vesicles. It has been believed that COPII vesicles containing cargo are released from the ER exit sites (ERES) into the cytosol and then reach and fuse with the first post-ER compartment, cis-Golgi or ER-to-Golgi intermediate compartment (ERGIC). However, it still remains elusive ...

متن کامل

New insights into the structural mechanisms of the COPII coat.

In eukaryotes, coat protein complex II (COPII) proteins are involved in transporting cargo proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. The COPII proteins, Sar1, Sec23/24, and Sec13/31 polymerize into a coat that gathers cargo proteins into a coated vesicle. Structures have been recently solved of individual COPII proteins, COPII proteins in complex with cargo, and highe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cold Spring Harbor perspectives in biology

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2013